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LETTER TO THE EDITOR 

Phase transitions in two-dimensional stochastic cellular 
automata 

Kunihiko Kaneko and Yasuhiro Akutsu 
Institute of Physics, College of A r t s  and Sciences, University of Tokyo, Komaba, Meguro- 
ku, Tokyo 153, Japan 

Received 1 August 1985, in final form 15 October 1985 

Abstract. Two-dimensional stochastic cellular automata with nearest-neighbour couplings 
are investigated. Depending on the rules, low-level noise phases are classified into ferro, 
glassy, roll, glassy-roll, and antiferro, glassy-antiferro, antiferro-roll, glassy-antiferro-roll, 
‘coexistent phase of ferro and antiferro’, ‘labyrinth’ and ‘turbulence’. Also, the oscillating 
phases with period 2 for the above phases are observed in other rules. Transformations 
from ferro to antiferro and from fixed point to periodic patterns are shown. The nature 
of phase transitions due to a change of noise is investigated. 

Phase transitions are common phenomena both in equilibrium and non-equilibrium 
systems. In equilibrium statistical mechanics, Ising models have played important 
roles. In non-equilibrium systems, the transition phenomena are more abundant 
(Nicolis and Prigogine 1977, Haken 1978), though a simple general model with discrete 
states is not available. In this letter, we consider a class of stochastic cellular automata 
(SCA), in order to study the general aspects of phase transitions both for equilibrium 
and non-equilibrium systems. The model might be regarded as a generalisation of 
Ising models and may also be a typical discrete model for non-equilibrium transitions. 

Recently, Wolfram (1983,1984) and Packard and Wolfram (1985) have investigated 
one- and two-dimensional cellular automata (CA) from the viewpoint of dynamical 
systems theory. A phase transition is observed in one-dimensional CA if the rules are 
changed at some lattice points (Grassberger et a1 1984, Kinzel 1985), while it is found 
in the coupled map lattices as the coupling parameter is changed (Kaneko l984,1985a, 
Aizawa er a1 1985). In the present letter a class of two-dimensional stochastic cellular 
automata with nearest-neighbour couplings is investigated on a square lattice with a 
periodic boundary condition, mainly focusing on the transition phenomena caused by 
a change of noise strength. 

Inclusion of noise in cellular automata is important for the following reasons: first, 
noise plays the role of temperature in equilibrium systems. Thus, a phase transition 
as the noise level changes is expected for a system with a dimension higher than one. 
Second, deterministic cellular automata can have a huge number of attractors. Inclusion 
of noise brings about a jump among attractors and leads to the selection of a small 
number of physical states (Kauffman 1969, Kaneko 1985b). Lastly noise plays an 
important role for the formation of patterns in non-equilibrium systems. 
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The rule for the evolution for the SCA in the present letter is given by 

[ I (nf , j*  S ; j )  with probability 1 - p 
S1.j = 1 - I  with probability p 

where n,, = s1,,-' + s,,,+, + s1- ' , ,  + s # + ~ , ,  with sf,, = 0 or 1. The suffices i,j denote a lattice 
site while the superscript t shows the discrete time step. In the present letter the system 
size is chosen to be 32x32. The 'rule' I is a function which takes the value 0 or 1. 
Noise is added so that sI,, changes its values with probability p .  Since the value of I 
has two choices for each possible 5 x 2 states ( n  = 0, 1 ,2 ,3 ,4  and s = 0, l ) ,  the number 
of possible rules is 2". 

We have investigated 2" rules for low-level noises ( p  - The essential feature, 
however, can be seen in the following symmetric rules. 

The symmetric rule is defined as the one which has symmetry about the transforma- 
tion of 0 and 1. This gives the condition I(n, s)  = 1 - I(4- n, 1 - s). Hereafter we 
restrict ourselves to the symmetric rules, which have 2' choices. 

Furthermore, the number of independent rules is reduced by the method of sub- 
lattices. The first transformation is the ferro-antiferro transformation ( FAF trsf). Let 
us consider the sublattice s;' with i + j  = odd and s:, with i + j  = even. If we apply the 
transformation s:,; = 1 - s;, and si,: = s:, for the system with a rule f( n, s') = 1(4 - n, s'), 
it is shown that the dynamics is equivalent to the system for the rule I(n, s). Thus, 
the result for the rule f ( n ,  s )  is automatically obtained from that of the rule 1(n, s)  
by the above transformation. The transformation changes a pattern 

1 1 1 1  1 0 1 0  
1 1 1 1 i n t o 0 1 0 1  
1 1 1 1  1 0 1 0  

and may be called a FAF trsf (ferro-antiferro transformation). 
Another transformation is obtained by the use of a temporal sublattice. If the 

transformation s;,? = s$ and s;,Y+' = 1 - s:>+' is applied to a system with a rule f( n, s') = 
I (4-  n, 1 - s'), it is shown that the dynamics are equivalent to a system with a rule 
I(n, s). The transformation changes a time series 1 1 1 1 1 1 (fixed point) to 1 0 1 0 1 0 
(period-2 oscillation) and may be called a periodic-fixed point transformation (PFP 
trsf). 

Taking the above two transformations into account, the number of independent 
symmetric rules is reduced to 10, which will be studied in the following, where a rule 
is represented by a code ( i O i l i * i 3 i 4 ) ,  where i, = I ( j ,  0) ( I ( j ,  1) = 1 - I(4-j, 0) from 
symmetry) or by a rule number defined by C",=, 2kik. 

Patterns at low-level noises are shown in table 1 for rules from 0 to 15. The pattern 
'ferro' means a phase with a long range order with broken symmetry about 0 and 1, 
i.e. the ferromagnetic phase in usual Ising systems. The magnetisation rn = ( 2 ~ , ~  - 1) 
appears for p < p c ,  where p c  is the 'transition noise level'. In the 'glassy' phase there 
appears a short range order for a weak noise, i.e. the correlation c k , l =  

((2si+kj+1 - 1)(2qj  - 1)) is not small if neither k nor j is large, though the long range 
order cannot be attained even if the noise level p goes to zero (see figure 1). No phase 
transition appears as p goes to zero. Since the relaxation becomes slower and slower 
as p -j 0 and the dynamics include a topological constraint, then here we tentatively 
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Table 1. Patterns of elementary SCA; rule numbers, their codes and patterns at low-level 
noise, and the presence or absence of long range order (LRO) at low noise are shown. If 
a rule is derived from another rule number which gives a simpler pattern (i.e. fixed point 
or ferro is simpler than periodic or antiferro (AF)) by FAF or PFP transformation, the type 
of transformation and the primary rule are written as ‘transformation number’. If a rule is 
invariant against the FAF transformation, it is written as self-dual (sD). 

Rules 0, 1, 2, 3, 4, 5, 10, 17, 18, 19 are primary in the sense that they have neither 
‘periodic’ nor ‘AF’ phases. Other rules are obtained by FAF or PFP transformation from 
the above rules. 

Number Code Pattern LRO Transformation 

5 
6 
1 
8 
9 

10 
11  
12 
13 
14 
15 

0 0 0 0 0  
0 0 0 0 1  
0 0 0  1 0  
0 0 0 1  1 
0 0  1 0 0  

0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1  1 
0 1  1 0 0  
0 1 1 0 1  
0 1  1 1 0  
0 1 1 1 1  

Trivial 
Glassy 
Ferro 
Ferro 
Coexistence of ferro 
and AF 

Ferro 
Periodic- AF-roll 
Periodic- AF 
A F  
Glassy- AF-roll 
(Additive turbulence) 
Periodic- AF 
Periodic-roll 
Periodic-glassy-roll 
Periodic-(labyrinth) 
Periodic-glassy- A F  

No 
No 
Yes 
Yes 
? 

Yes 
Yes 
Yes 
Yes 
No 
No 
Yes 
Yes 
No 
No 
No 

PFP * FAF( 19) 
PFP * FAF(3) 
FAF(2) 
FAF( 18) 
(SD) 
PFP * FAF(5) 
PFP( 19) 
PFP(18) 
PFP(17) (SD) 

PFP* F A F ( ~ )  

Figure 3. Overlap function C (  T) for the rule 0 0 0 0 1 for p = 0.001. The data can be fitted 
well by a,e-”’I + a2e-r’r’ with a, = 0.37, r,  = 3.2 x lo2, u2 = 0.63 and r2 = 1.4 x lo3. 

call the phase ‘glassy’. The ‘roll’ phase is shown in figure 2 ( b ) ,  which is the pattern with 

1 1 0 0 1 1 0 0  
1 1  0 0 1 1  0 0. 
1 1 0 0 1 1 0 0  

A glassy-roll pattern is a roll phase only with a short range order. 
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Figure 2. Snapshot of SCA with the rule 1 0 0  1 (roll) for p=0.0045 ( a )  from random 
initial configurations (after lo4 steps), ( b )  from ordered initial configurations (after lo4 
steps). 

'Periodic' means a pattern which repeats 1 and 0 in time at each site (i.e. the period 
is 2 ) .  All periodic patterns are obtained by PFP trsf. For example, the ordered phase 
for the rule 1 0 0 1 1 is roll. Applying PFP trsf, the rule is changed to 0 1 1 0 0, which 
gives the periodic-roll pattern as shown in table 1. Since the rule with a number 
n(n > 15) is obtained by the PFP trsf from the rule with a number 31 - n, phases for 
the rules with n( n > 15) are omitted from the table. 

FAF trsf is also useful. If we apply the transformation to a rule for which the 
low-level noise phase is a pattern such as ferro, glassy, roll or glassy-roll, the low-level 
noise phase for the transformed rule is the corresponding pattern AF 

1 0 1 0  

or glassy-AF-roll respectively. For example, if we apply FAF trsf and PFP trsf successively 
to the rule 0 1 1 0 1 (periodic-glassy-roll), rule 0 1 0 0 1 is obtained, which yields glassy- 
AF-roll for low-level noise. 

The rules 0 0 0 0 0 (O), 0 0 1 0 0 (4), 0 1 0 1 0 (lo),  0 1 1 1 0 (14) (and those obtained 
by PFP trsf from these rules) are invariant under FAF trsf. Except for the trivial rule 
0 (which preserves the initial condition), these rules show interesting behaviour for 
low-level noise, which will be discussed next. 

Here some typical patterns in table 1 are discussed in a little more detail, though 
the complete accounts will be reportted elsewhere (Akutsu er al 1985). 

(a) Glassy (rule 00001). As the noise level p is lowered, the relaxation becomes 
slower and slower. We calculated the overlap function 

c ( T ) = ( 1 / N 2 ) ~ ( ( 2 s ~ ~ ~ r - 1 ) ( 2 s ~ j - 1 ) )  
ij 

where ( ) indicates long time average and N = 32, after transients have decayed out 
( to-  lo3). C( T )  cannot be fitted by a single exponential function and it seems to be 
represented by ale-T/71 + a2e-'/'2+ (see figure 3). The fastest relaxation T~ is 
estimated as follows: the probability that the neighbouring sites take the same values 
(0 0 or 1 1) is defined as 4. For small noise p ,  the self-consistent approximation for q 
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0 1 2 3 
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Figure 3. Overlap function C( T) for the rule 0 0 0 0 1 for p = 0.001. The data can be fitted 
well by a,e-T"I + a2e-"'2 with a, = 0.37, T ,  = 3.2 X lo2, a2 = 0.63 and r2 = 1.4 X lo3. 

gives the equation (1 - 4)4=  8p, from which the relaxation time T~ is given by ( 3 p ) - ' .  
The numerical results confirm the above estimation. The detailed explanation for the 
form of C( T), however, remains a problem for the future. 

(6) Roll (rule 1 0 0 1 I ) .  The order-disorder transition occurs as can be seen in figure 
3. The transition is first order in the sense that it has a hysteresis. If the noise level 
is lowered, the ordered state appears at p = p -  - 0.0044, while it remains up to p = p+ - 
0.0049 when the noise level is increased on this ordered phase. The roll magnetisation 
is defined in a similar way to the staggered magnetisation for the antiferromagnetic 
order, which shows a large jump at p - p +  or p - .  

Here we note that this ordered state breaks the spatial symmetry (rotational 
symmetry with angle .rr/2), since the rule itself is isotropic. 

(c) Ferro-antiferro coexistence (rule 0 0 1 0 0). Both the ferro and AF patterns are stable 
for low-level noise for the rule. If we start from the random initial configurations, 
some systems fall into ferro and some into AF, while the others show the coexistence 
of ferro and antiferro clusters even after 4 x lo4 steps, and fixed patterns are not attained 
(see figure 4). 

(d) 'Labyrinth' (rule 1 0 0 0 1). The rule 1 0 0 0 1 (0 1 1 1 0 for the periodic case) gives 
a pattern in figure 5 for low-level noise. Both the roll 

1 1 0 0 1 1 0 0  1 0 1 0  
1 1 0 0 1 1 0 0 and a single roll 1 0 1 0 
1 1 0 0 1 1 0 0  1 0 1 0  

are not destroyed by a change of at a single site. These two types of rolls form a 
labyrinth structure only with a short range order. The relaxation of overlap function 
(2) is quite slow for low-level noise, which is fit by a single exponential decay 

(e) 'Additive turbulence' (rule 0 1 0 1 0 or 1 0 1 0 I ) .  The rule 0 1 0 1 0 shows a chaotic 
behaviour. No local order with periodic or fixed patterns has been observed (see figure 
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Figure 4. Snapshot of SCA with the rule 0 0 1 0 0 (coexistence of ferro and AF) for p = 0.001. 

Figure 5. Snapshot of SCA with the rule 1 0 0 0 1 (labyrinth) for p = 0.001. 

6). Simple patterns such as ferro, AF, periodic-roll and single-roll can exist as a special 
solution for p = 0, but they are easily destroyed by a change of si,j at a single site. 

The above rules are additive in the sense of Wolfram (1983), since they are written 
as 

s?+’ 1.J = sy+, , j+  sy-l,j + s;j+l + S Y j - ’  + syj  

or 

sy+:,,j+ s;-l,j + s;j+l + S Y j - ’  + s ; j - l  (mod 2) 

Thus, the apparently turbulent behaviour for the above rules can be understood by 
the superposition of the behaviour obtained by a single site excitation, which is 
analogous to that by rule 90 of one-dimensional elementary CA (Wolfram 1983). 

We have clarified various ordered phases for elementary stochastic cellular 
automata. Though some of the rules show behaviour common to the usual Ising models 
(such as ferro or AF), other remarkable phases have been observed. For the ‘glassy’ 
phase, it is not yet certain whether the phase is similar to the low temperature phase 
for the spin glass model with short range interactions. Recently, Fredrickson and 
Andersen ( 1984) have considered Ising spin systems with kinetics with some constraint 

(mod 2) (rule 0 1 0  10 )  

(rule 1 0  1 0  1). 
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Figure 6. Snapshot of SCA with the rule 0 1 0 1 0 (turbulence) for p = 0.001. 

and expected a glass transition. The rule 0 0 0 0 1 imposes a topological constraint on 
the dynamics. Monte Carlo simulation or SCA with unusual kinetics may be of relevance 
for the understanding of some aspects of glassy behaviour. 

The periodic patterns may be related to some non-equilibrium phase transitions in 
an ensemble of oscillator systems (Kuramoto 1981). Roll patterns and their first order 
transitions may be related to the dislocation in roll patterns in Benard systems (Ahlers 
and Behringer 1978, Gollub and Steinman 1981, Fauve er a1 1984). 

Stochastic cellular automata are simple and show a variety of new phenomena, 
which may open a curtain on a new era of phase transition study. 

The authors would like to thank Mr Yukito Iba for stimulating discussions and critical 
comments. 
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